Acta Crystallographica Section E

## Structure Reports <br> Online

ISSN 1600-5368

## Hui Wu, ${ }^{\text {a }}$ Z ${ }^{\text {Zhou }} \mathbf{X u}{ }^{\text {a }}$ and Yong-Min Liang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Lanzhou University, State Key Laboratory of Applied Organic Chemistry Lanzhou, Gansu, 730000, People's Republic of China

Correspondence e-mail:
wuhui72@yahoo.com.cn

## Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.040$
$w R$ factor $=0.035$
Data-to-parameter ratio $=13.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## (E)-1-(2-Hydroxyphenyl)-3-(3,4,5-trimethoxy-phenyl)prop-2-en-1-one

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$, was prepared by the condensation of 2-hydroxyacetophenone with 3,4,5-trimethoxybenzaldehyde. The trimethoxyphenyl and hydroxyphenyl rings of the chalcone system are approximately coplanar.

## Comment

Chalcones, particularly those with hydroxy substituents, are important components of numerous natural products that show interesting biological and pharmacological activities (Kumar et al., 2003; Liu et al., 2001). They are also important intermediates in organic synthesis, such as in the use of 2hydroxychalcones in the synthesis of flavanones (Chaturvedi et al., 1992). We report here the structure of the title chalcone, (I).

(I)

The two aromatic rings are nearly coplanar [interplanar angle $15.33(12)^{\circ}$ ]. Furthermore, the hydroxyphenyl ring subtends an angle of $5.39(14)^{\circ}$ at the central $\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}$ section of the molecule; the corresponding angle for the methoxyphenyl ring is $9.95(14)^{\circ}$, with the two benzene rings rotated in opposite directions. A classic intramolecular hydrogen-bonding interaction (Table 2) involves the hydroxy group and the adjacent ketone O atom to form a sixmembered ring that promotes the planarity of the molecule.

## Experimental

Compound (I) was prepared through condensation of 2-hydroxyacetophenone ( $5 \mathrm{mmol}, 1.57 \mathrm{~g}$ ) with 3,4,5-trimethoxybenzaldehyde ( $5 \mathrm{mmol}, 0.68 \mathrm{~g}$ ) in $20 \% \mathrm{NaOH}$ solution ( 1 ml ), using phase transfer TBAB (tetrabutylammonium bromide; $0.75 \mathrm{mmol}, 0.25 \mathrm{~g}$ ) under microwave irradiation for 5 min (yield $73 \%$, m.p. $419-421 \mathrm{~K}$ ). The reaction mixture was poured into water $(100 \mathrm{ml})$ and filtered. After the usual work-up, the product was purified by chromatography on silica gel and crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a $95 \%$ ethanol solution.

Received 12 April 2005 Accepted 15 April 2005 Online 23 April 2005

## Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$
$M_{r}=314.32$
Monoclinic, $P 2_{\mathrm{h}} / \mathrm{c}$
$a=12.686$ (2) A
$b=8.588$ (1) A
$c=15.422$ (3) $\AA$
$\beta=108.00(1)^{\circ}$
$V=1598.1$ (5) $\AA^{3}$
$Z=4$
$D_{x}=1.307 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K $\alpha$ radiation
Cell parameters from 33
reflections
$\theta=3.0-14.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, yellow
$0.35 \times 0.30 \times 0.16 \mathrm{~mm}$

## Data collection

Siemens $P 4$ diffractometer $\omega$ scans
Absorption correction: none 3470 measured reflections 2989 independent reflections 984 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$

$$
\theta_{\max }=25.5^{\circ}
$$

$h=0 \rightarrow 15$
$k=0 \rightarrow 10$
$l=-18 \rightarrow 17$
3 standard reflections every 97 reflections intensity decay: $1.9 \%$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.001 P)^{2}\right. \\ & +0.075 P]\end{aligned}$
$+0.075 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.12 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0061 (3)

## Table 1

Selected geometric parameters ( $\left({ }^{\circ},^{\circ}\right)$.

| $\mathrm{O} 1-\mathrm{C} 1$ | $1.350(3)$ | $\mathrm{C} 8-\mathrm{C} 9$ | $1.323(2)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{O} 1-\mathrm{H} 1 O$ | $0.832(10)$ | $\mathrm{C} 9-\mathrm{C} 10$ | $1.466(3)$ |
| $\mathrm{O} 2-\mathrm{C} 7$ | $1.239(3)$ |  |  |
| $\mathrm{C} 12-\mathrm{O} 3-\mathrm{C} 16$ | $117.7(2)$ | $\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 6$ | $119.9(3)$ |
| $\mathrm{C} 13-\mathrm{O} 4-\mathrm{C} 17$ | $113.1(2)$ | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ | $127.8(3)$ |
| $\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$ | $120.4(3)$ |  |  |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $-179.7(3)$ | $\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ | $8.2(4)$ |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $0.0(4)$ | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15$ | $1.1(4)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$ | $1.6(4)$ | $\mathrm{C} 17-\mathrm{O} 4-\mathrm{C} 13-\mathrm{C} 14$ | $77.0(3)$ |

Table 2
Hydrogen-bond geometry ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O} 2$ | $0.83(1)$ | $1.79(2)$ | $2.521(3)$ | $146(3)$ |

Crystals of (I) were weakly diffracting, with only $33 \%$ of the reflections considered to be observed. However, this fact did not adversely affect the solution and refinement processes. With the exception of $\mathrm{H} 1 O$, which was located and freely refined, H atoms were positioned geometrically and allowed to ride on their parent atoms at $\mathrm{C}-\mathrm{H}$ distances of 0.93 or $0.96 \AA$ with $U_{\text {iso(H) }}=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the Foundation of the 'Natural Science Research Project' (No. JH03-038) and 'Hi-Tech. Development Project ' (No. 03 KJD150213) of Jiangsu Province for financial support.


Figure 1
The molecular structure of (I), showing $50 \%$ probability displacement ellipsoids and the atom-numbering scheme.


Figure 2
The molecular packing of (I). H atoms have been omitted.

## References

Chaturvedi, R., Patil, P. N. \& Mulchandani, N. B. (1992). Indian J. Chem. Sect. B, 31, 340-341.
Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. \& Khan, S. R. (2003). J. Med. Chem. 46, 2813-2815.

Liu, M., Wilairat, P. \& Go, M. L. (2001). J. Med. Chem. 44, 4443-4445.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

