organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui Wu,^a* Zhou Xu^a and Yong-Min Liang^b

^aDepartment of Chemistry, Xuzhou Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China, and ^bDepartment of Chemistry, Lanzhou University, State Key Laboratory of Applied Organic Chemistry Lanzhou, Gansu, 730000, People's Republic of China

Correspondence e-mail: wuhui72@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.004 Å R factor = 0.040 wR factor = 0.035 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*E*)-1-(2-Hydroxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one

The title compound, $C_{18}H_{18}O_5$, was prepared by the condensation of 2-hydroxyacetophenone with 3,4,5-trimeth-oxybenzaldehyde. The trimethoxyphenyl and hydroxyphenyl rings of the chalcone system are approximately coplanar.

Received 12 April 2005 Accepted 15 April 2005 Online 23 April 2005

Comment

Chalcones, particularly those with hydroxy substituents, are important components of numerous natural products that show interesting biological and pharmacological activities (Kumar *et al.*, 2003; Liu *et al.*, 2001). They are also important intermediates in organic synthesis, such as in the use of 2-hydroxychalcones in the synthesis of flavanones (Chaturvedi *et al.*, 1992). We report here the structure of the title chalcone, (I).

The two aromatic rings are nearly coplanar [interplanar angle $15.33 (12)^{\circ}$]. Furthermore, the hydroxyphenyl ring subtends an angle of $5.39 (14)^{\circ}$ at the central C–C=C–C section of the molecule; the corresponding angle for the methoxyphenyl ring is 9.95 (14)°, with the two benzene rings rotated in opposite directions. A classic intramolecular hydrogen-bonding interaction (Table 2) involves the hydroxy group and the adjacent ketone O atom to form a sixmembered ring that promotes the planarity of the molecule.

Experimental

Compound (I) was prepared through condensation of 2-hydroxyacetophenone (5 mmol, 1.57 g) with 3,4,5-trimethoxybenzaldehyde (5 mmol, 0.68 g) in 20% NaOH solution (1 ml), using phase transfer TBAB (tetrabutylammonium bromide; 0.75 mmol, 0.25 g) under microwave irradiation for 5 min (yield 73%, m.p. 419–421 K). The reaction mixture was poured into water (100 ml) and filtered. After the usual work-up, the product was purified by chromatography on silica gel and crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a 95% ethanol solution.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $C_{18}H_{18}O_5$ $M_r = 314.32$ Monoclinic, $P2_1/c$ a = 12.686 (2) Å b = 8.588 (1) Å c = 15.422 (3) Å $\beta = 108.00$ (1)° V = 1598.1 (5) Å³ Z = 4

Data collection

Siemens *P*4 diffractometer ω scans Absorption correction: none 3470 measured reflections 2989 independent reflections 984 reflections with *I* > 2 $\sigma(I)$ *R*_{int} = 0.030

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_{\rm o}{}^2) + (0.001P)^2$ $R[F^2 > 2\sigma(F^2)] = 0.040$ wR(F²) = 0.035 + 0.075P] where $P = (F_0^2 + 2F_c^2)/3$ S = 0.80 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.16$ e Å 2989 reflections $\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$ 216 parameters H atoms treated by a mixture of Extinction correction: SHELXL97 independent and constrained Extinction coefficient: 0.0061 (3) refinement

 $D_x = 1.307 \text{ Mg m}^{-3}$

Cell parameters from 33

 $0.35 \times 0.30 \times 0.16 \ \text{mm}$

Mo $K\alpha$ radiation

reflections

 $\theta = 3.0-14.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

T = 296 (2) K

Block, yellow

 $\theta_{\rm max} = 25.5^{\circ}$

 $h = 0 \rightarrow 15$

 $k = 0 \rightarrow 10$

 $l = -18 \rightarrow 17$

3 standard reflections

every 97 reflections

intensity decay: 1.9%

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.350 (3)	C8-C9	1.323 (2)
O1-H10	0.832 (10)	C9-C10	1.466 (3)
O2-C7	1.239 (3)		
C12-O3-C16	117.7 (2)	O2-C7-C6	119.9 (3)
C13-O4-C17	113.1 (2)	C8-C9-C10	127.8 (3)
O2-C7-C8	120.4 (3)		
01-C1-C2-C3	-179.7(3)	02-C7-C8-C9	8.2 (4)
C3-C4-C5-C6	0.0 (4)	C8-C9-C10-C15	1.1 (4)
O1-C1-C6-C7	1.6 (4)	C17-O4-C13-C14	77.0 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1 <i>O</i> ···O2	0.83 (1)	1.79 (2)	2.521 (3)	146 (3)

Crystals of (I) were weakly diffracting, with only 33% of the reflections considered to be observed. However, this fact did not adversely affect the solution and refinement processes. With the exception of H1*O*, which was located and freely refined, H atoms were positioned geometrically and allowed to ride on their parent atoms at C–H distances of 0.93 or 0.96 Å with $U_{\rm iso(H)} = 1.2U_{\rm eq}(C)$.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 1997*b*); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the Foundation of the 'Natural Science Research Project' (No. JH03-038) and 'Hi-Tech. Development Project' (No. 03 KJD150213) of Jiangsu Province for financial support.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2	
The molecular packing of (I). H atoms have been	omitted.

References

- Chaturvedi, R., Patil, P. N. & Mulchandani, N. B. (1992). *Indian J. Chem. Sect. B*, **31**, 340–341.
- Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813–2815.
- Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443-4445.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.